Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Sci Immunol ; 9(94): eadg7549, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640252

ABSTRACT

Vedolizumab (VDZ) is a first-line treatment in ulcerative colitis (UC) that targets the α4ß7- mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) axis. To determine the mechanisms of action of VDZ, we examined five distinct cohorts of patients with UC. A decrease in naïve B and T cells in the intestines and gut-homing (ß7+) plasmablasts in circulation of VDZ-treated patients suggested that VDZ targets gut-associated lymphoid tissue (GALT). Anti-α4ß7 blockade in wild-type and photoconvertible (KikGR) mice confirmed a loss of GALT size and cellularity because of impaired cellular entry. In VDZ-treated patients with UC, treatment responders demonstrated reduced intestinal lymphoid aggregate size and follicle organization and a reduction of ß7+IgG+ plasmablasts in circulation, as well as IgG+ plasma cells and FcγR-dependent signaling in the intestine. GALT targeting represents a previously unappreciated mechanism of action of α4ß7-targeted therapies, with major implications for this therapeutic paradigm in UC.


Subject(s)
Colitis, Ulcerative , Humans , Animals , Mice , Colitis, Ulcerative/drug therapy , Integrins , Intestinal Mucosa , Peyer's Patches , Immunoglobulin G/therapeutic use
2.
Circulation ; 148(5): 405-425, 2023 08.
Article in English | MEDLINE | ID: mdl-37409482

ABSTRACT

BACKGROUND: Adeno-associated virus (AAV) has emerged as one of the best tools for cardiac gene delivery due to its cardiotropism, long-term expression, and safety. However, a significant challenge to its successful clinical use is preexisting neutralizing antibodies (NAbs), which bind to free AAVs, prevent efficient gene transduction, and reduce or negate therapeutic effects. Here we describe extracellular vesicle-encapsulated AAVs (EV-AAVs), secreted naturally by AAV-producing cells, as a superior cardiac gene delivery vector that delivers more genes and offers higher NAb resistance. METHODS: We developed a 2-step density-gradient ultracentrifugation method to isolate highly purified EV-AAVs. We compared the gene delivery and therapeutic efficacy of EV-AAVs with an equal titer of free AAVs in the presence of NAbs, both in vitro and in vivo. In addition, we investigated the mechanism of EV-AAV uptake in human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and mouse models in vivo using a combination of biochemical techniques, flow cytometry, and immunofluorescence imaging. RESULTS: Using cardiotropic AAV serotypes 6 and 9 and several reporter constructs, we demonstrated that EV-AAVs deliver significantly higher quantities of genes than AAVs in the presence of NAbs, both to human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and to mouse hearts in vivo. Intramyocardial delivery of EV-AAV9-sarcoplasmic reticulum calcium ATPase 2a to infarcted hearts in preimmunized mice significantly improved ejection fraction and fractional shortening compared with AAV9-sarcoplasmic reticulum calcium ATPase 2a delivery. These data validated NAb evasion by and therapeutic efficacy of EV-AAV9 vectors. Trafficking studies using human induced pluripotent stem cell-derived cells in vitro and mouse hearts in vivo showed significantly higher expression of EV-AAV6/9-delivered genes in cardiomyocytes compared with noncardiomyocytes, even with comparable cellular uptake. Using cellular subfraction analyses and pH-sensitive dyes, we discovered that EV-AAVs were internalized into acidic endosomal compartments of cardiomyocytes for releasing and acidifying AAVs for their nuclear uptake. CONCLUSIONS: Together, using 5 different in vitro and in vivo model systems, we demonstrate significantly higher potency and therapeutic efficacy of EV-AAV vectors compared with free AAVs in the presence of NAbs. These results establish the potential of EV-AAV vectors as a gene delivery tool to treat heart failure.


Subject(s)
Extracellular Vesicles , Induced Pluripotent Stem Cells , Humans , Mice , Animals , Dependovirus/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Genetic Vectors , Induced Pluripotent Stem Cells/metabolism , Antibodies, Neutralizing , Extracellular Vesicles/metabolism
3.
bioRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333091

ABSTRACT

Ulcerative colitis (UC) is an idiopathic chronic inflammatory disease of the colon with sharply rising global prevalence. Dysfunctional epithelial compartment (EC) dynamics are implicated in UC pathogenesis although EC-specific studies are sparse. Applying orthogonal high-dimensional EC profiling to a Primary Cohort (PC; n=222), we detail major epithelial and immune cell perturbations in active UC. Prominently, reduced frequencies of mature BEST4+OTOP2+ absorptive and BEST2+WFDC2+ secretory epithelial enterocytes were associated with the replacement of homeostatic, resident TRDC+KLRD1+HOPX+ γδ+ T cells with RORA+CCL20+S100A4+ TH17 cells and the influx of inflammatory myeloid cells. The EC transcriptome (exemplified by S100A8, HIF1A, TREM1, CXCR1) correlated with clinical, endoscopic, and histological severity of UC in an independent validation cohort (n=649). Furthermore, therapeutic relevance of the observed cellular and transcriptomic changes was investigated in 3 additional published UC cohorts (n=23, 48 and 204 respectively) to reveal that non-response to anti-Tumor Necrosis Factor (anti-TNF) therapy was associated with EC related myeloid cell perturbations. Altogether, these data provide high resolution mapping of the EC to facilitate therapeutic decision-making and personalization of therapy in patients with UC.

4.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711839

ABSTRACT

Targeting the α4ß7-MAdCAM-1 axis with vedolizumab (VDZ) is a front-line therapeutic paradigm in ulcerative colitis (UC). However, mechanism(s) of action (MOA) of VDZ remain relatively undefined. Here, we examined three distinct cohorts of patients with UC (n=83, n=60, and n=21), to determine the effect of VDZ on the mucosal and peripheral immune system. Transcriptomic studies with protein level validation were used to study drug MOA using conventional and transgenic murine models. We found a significant decrease in colonic and ileal naïve B and T cells and circulating gut-homing plasmablasts (ß7+) in VDZ-treated patients, pointing to gut-associated lymphoid tissue (GALT) targeting by VDZ. Murine Peyer's patches (PP) demonstrated a significant loss cellularity associated with reduction in follicular B cells, including a unique population of epithelium-associated B cells, following anti-α4ß7 antibody (mAb) administration. Photoconvertible (KikGR) mice unequivocally demonstrated impaired cellular entry into PPs in anti-α4ß7 mAb treated mice. In VDZ-treated, but not anti-tumor necrosis factor-treated UC patients, lymphoid aggregate size was significantly reduced in treatment responders compared to non-responders, with an independent validation cohort further confirming these data. GALT targeting represents a novel MOA of α4ß7-targeted therapies, with major implications for this therapeutic paradigm in UC, and for the development of new therapeutic strategies.

5.
Nat Med ; 28(4): 766-779, 2022 04.
Article in English | MEDLINE | ID: mdl-35190725

ABSTRACT

B cells, which are critical for intestinal homeostasis, remain understudied in ulcerative colitis (UC). In this study, we recruited three cohorts of patients with UC (primary cohort, n = 145; validation cohort 1, n = 664; and validation cohort 2, n = 143) to comprehensively define the landscape of B cells during UC-associated intestinal inflammation. Using single-cell RNA sequencing, single-cell IgH gene sequencing and protein-level validation, we mapped the compositional, transcriptional and clonotypic landscape of mucosal and circulating B cells. We found major perturbations within the mucosal B cell compartment, including an expansion of naive B cells and IgG+ plasma cells with curtailed diversity and maturation. Furthermore, we isolated an auto-reactive plasma cell clone targeting integrin αvß6 from inflamed UC intestines. We also identified a subset of intestinal CXCL13-expressing TFH-like T peripheral helper cells that were associated with the pathogenic B cell response. Finally, across all three cohorts, we confirmed that changes in intestinal humoral immunity are reflected in circulation by the expansion of gut-homing plasmablasts that correlates with disease activity and predicts disease complications. Our data demonstrate a highly dysregulated B cell response in UC and highlight a potential role of B cells in disease pathogenesis.


Subject(s)
Colitis, Ulcerative , Plasma Cells , B-Lymphocytes , Colitis, Ulcerative/genetics , Humans , Intestinal Mucosa/pathology , Lymphocyte Count , T-Lymphocytes, Helper-Inducer
6.
Sci Rep ; 11(1): 13308, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172783

ABSTRACT

Gastrointestinal symptoms are common in COVID-19 patients but the nature of the gut immune response to SARS-CoV-2 remains poorly characterized, partly due to the difficulty of obtaining biopsy specimens from infected individuals. In lieu of tissue samples, we measured cytokines, inflammatory markers, viral RNA, microbiome composition, and antibody responses in stool samples from a cohort of 44 hospitalized COVID-19 patients. SARS-CoV-2 RNA was detected in stool of 41% of patients and more frequently in patients with diarrhea. Patients who survived had lower fecal viral RNA than those who died. Strains isolated from stool and nasopharynx of an individual were the same. Compared to uninfected controls, COVID-19 patients had higher fecal levels of IL-8 and lower levels of fecal IL-10. Stool IL-23 was higher in patients with more severe COVID-19 disease, and we found evidence of intestinal virus-specific IgA responses associated with more severe disease. We provide evidence for an ongoing humeral immune response to SARS-CoV-2 in the gastrointestinal tract, but little evidence of overt inflammation.


Subject(s)
COVID-19 , Feces , Gastrointestinal Microbiome , Nasopharynx/virology , RNA, Viral/isolation & purification , Aged , Biomarkers/metabolism , COVID-19/epidemiology , COVID-19/immunology , Cohort Studies , Cytokines/metabolism , Feces/virology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Male , Middle Aged , New York City/epidemiology , SARS-CoV-2/isolation & purification
7.
Gastroenterology ; 160(7): 2435-2450.e34, 2021 06.
Article in English | MEDLINE | ID: mdl-33676971

ABSTRACT

BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.


Subject(s)
COVID-19/virology , Gastrointestinal Diseases/virology , Immunity, Mucosal , Intestinal Mucosa/virology , SARS-CoV-2/pathogenicity , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/immunology , COVID-19/mortality , Case-Control Studies , Cells, Cultured , Cytokines/blood , Female , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/immunology , Gastrointestinal Diseases/mortality , Host-Pathogen Interactions , Humans , Inflammation Mediators/blood , Intestinal Mucosa/immunology , Italy , Male , Middle Aged , New York City , Prognosis , Risk Assessment , Risk Factors , SARS-CoV-2/immunology , Viral Load
8.
Nature ; 591(7851): 639-644, 2021 03.
Article in English | MEDLINE | ID: mdl-33461210

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with the development of variable levels of antibodies with neutralizing activity, which can protect against infection in animal models1,2. Antibody levels decrease with time, but, to our knowledge, the nature and quality of the memory B cells that would be required to produce antibodies upon reinfection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection with SARS-CoV-2. We find that titres of IgM and IgG antibodies against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 decrease significantly over this time period, with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by fivefold in pseudotype virus assays. By contrast, the number of RBD-specific memory B cells remains unchanged at 6.2 months after infection. Memory B cells display clonal turnover after 6.2 months, and the antibodies that they express have greater somatic hypermutation, resistance to RBD mutations and increased potency, indicative of continued evolution of the humoral response. Immunofluorescence and PCR analyses of intestinal biopsies obtained from asymptomatic individuals at 4 months after the onset of coronavirus disease 2019 (COVID-19) revealed the persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 individuals. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Biopsy , COVID-19/blood , Cohort Studies , Fluorescent Antibody Technique , Humans , Immunity, Humoral/genetics , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Immunologic Memory/immunology , Intestines/immunology , Middle Aged , Mutation , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Young Adult
9.
Gastroenterology ; 160(1): 287-301.e20, 2021 01.
Article in English | MEDLINE | ID: mdl-32980345

ABSTRACT

BACKGROUND AND AIMS: The presence of gastrointestinal symptoms and high levels of viral RNA in the stool suggest active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within enterocytes. METHODS: Here, in multiple, large cohorts of patients with inflammatory bowel disease (IBD), we have studied the intersections between Coronavirus Disease 2019 (COVID-19), intestinal inflammation, and IBD treatment. RESULTS: A striking expression of ACE2 on the small bowel enterocyte brush border supports intestinal infectivity by SARS-CoV-2. Commonly used IBD medications, both biologic and nonbiologic, do not significantly impact ACE2 and TMPRSS2 receptor expression in the uninflamed intestines. In addition, we have defined molecular responses to COVID-19 infection that are also enriched in IBD, pointing to shared molecular networks between COVID-19 and IBD. CONCLUSIONS: These data generate a novel appreciation of the confluence of COVID-19- and IBD-associated inflammation and provide mechanistic insights supporting further investigation of specific IBD drugs in the treatment of COVID-19. Preprint doi: https://doi.org/10.1101/2020.05.21.109124.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , Inflammatory Bowel Diseases/enzymology , Intestinal Mucosa/enzymology , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/virology , Case-Control Studies , Clinical Trials as Topic , Cross-Sectional Studies , Disease Models, Animal , Female , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/virology , Longitudinal Studies , Male , Mice , SARS-CoV-2/drug effects , Serine Endopeptidases/genetics , Signal Transduction , COVID-19 Drug Treatment
10.
bioRxiv ; 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33173867

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with development of variable levels of antibodies with neutralizing activity that can protect against infection in animal models. Antibody levels decrease with time, but the nature and quality of the memory B cells that would be called upon to produce antibodies upon re-infection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection. We find that IgM, and IgG anti-SARS-CoV-2 spike protein receptor binding domain (RBD) antibody titers decrease significantly with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by five-fold in pseudotype virus assays. In contrast, the number of RBD-specific memory B cells is unchanged. Memory B cells display clonal turnover after 6.2 months, and the antibodies they express have greater somatic hypermutation, increased potency and resistance to RBD mutations, indicative of continued evolution of the humoral response. Analysis of intestinal biopsies obtained from asymptomatic individuals 4 months after coronavirus disease-2019 (COVID-19) onset, using immunofluorescence, or polymerase chain reaction, revealed persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 volunteers. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.

11.
medRxiv ; 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-32935117

ABSTRACT

Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of coronavirus disease 2019 (COVID-19), we investigated intestinal infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its effect on disease pathogenesis. SARS-CoV-2 was detected in small intestinal enterocytes by immunofluorescence staining or electron microscopy, in 13 of 15 patients studied. High dimensional analyses of GI tissues revealed low levels of inflammation in general, including active downregulation of key inflammatory genes such as IFNG, CXCL8, CXCL2 and IL1B and reduced frequencies of proinflammatory dendritic cell subsets. To evaluate the clinical significance of these findings, examination of two large, independent cohorts of hospitalized patients in the United States and Europe revealed a significant reduction in disease severity and mortality that was independent of gender, age, and examined co-morbid illnesses. The observed mortality reduction in COVID-19 patients with GI symptoms was associated with reduced levels of key inflammatory proteins including IL-6, CXCL8, IL-17A and CCL28 in circulation but was not associated with significant differences in nasopharyngeal viral loads. These data draw attention to organ-level heterogeneity in disease pathogenesis and highlight the role of the GI tract in attenuating SARS-CoV-2-associated inflammation with related mortality benefit. ONE SENTENCE SUMMARY: Intestinal infection with SARS-CoV-2 is associated with a mild inflammatory response and improved clinical outcomes.

12.
medRxiv ; 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-32909002

ABSTRACT

We sought to characterize the role of the gastrointestinal immune system in the pathogenesis of the inflammatory response associated with COVID-19. We measured cytokines, inflammatory markers, viral RNA, microbiome composition and antibody responses in stool from a cohort of 44 hospitalized COVID-19 patients. SARS-CoV-2 RNA was detected in stool of 41% of patients and more frequently in patients with diarrhea. Patients who survived had lower fecal viral RNA than those who died. Strains isolated from stool and nasopharynx of an individual were the same. Compared to uninfected controls, COVID-19 patients had higher fecal levels of IL-8 and lower levels of fecal IL-10. Stool IL-23 was higher in patients with more severe COVID-19 disease, and we found evidence of intestinal virus-specific IgA responses associated with more severe disease. We provide evidence for an ongoing humeral immune response to SARS-CoV-2 in the gastrointestinal tract, but little evidence of overt inflammation.

13.
Circulation ; 139(4): 518-532, 2019 01 22.
Article in English | MEDLINE | ID: mdl-29997116

ABSTRACT

BACKGROUND: Despite its functional importance in various fundamental bioprocesses, studies of N6-methyladenosine (m6A) in the heart are lacking. Here, we show that the FTO (fat mass and obesity-associated protein), an m6A demethylase, plays a critical role in cardiac contractile function during homeostasis, remodeling, and regeneration. METHODS: We used clinical human samples, preclinical pig and mouse models, and primary cardiomyocyte cell cultures to study the functional role of m6A and FTO in the heart and in cardiomyocytes. We modulated expression of FTO by using adeno-associated virus serotype 9 (in vivo), adenovirus (both in vivo and in vitro), and small interfering RNAs (in vitro) to study its function in regulating cardiomyocyte m6A, calcium dynamics and contractility, and cardiac function postischemia. We performed methylated (m6A) RNA immunoprecipitation sequencing to map transcriptome-wide m6A, and methylated (m6A) RNA immunoprecipitation quantitative polymerase chain reaction assays to map and validate m6A in individual transcripts, in healthy and failing hearts, and in myocytes. RESULTS: We discovered that FTO has decreased expression in failing mammalian hearts and hypoxic cardiomyocytes, thereby increasing m6A in RNA and decreasing cardiomyocyte contractile function. Improving expression of FTO in failing mouse hearts attenuated the ischemia-induced increase in m6A and decrease in cardiac contractile function. This is performed by the demethylation activity of FTO, which selectively demethylates cardiac contractile transcripts, thus preventing their degradation and improving their protein expression under ischemia. In addition, we demonstrate that FTO overexpression in mouse models of myocardial infarction decreased fibrosis and enhanced angiogenesis. CONCLUSIONS: Collectively, our study demonstrates the functional importance of the FTO-dependent cardiac m6A methylome in cardiac contraction during heart failure and provides a novel mechanistic insight into the therapeutic mechanisms of FTO.


Subject(s)
Adenosine/analogs & derivatives , Heart Failure/enzymology , Myocardial Infarction/enzymology , Myocytes, Cardiac/enzymology , Regeneration , Ventricular Function, Left , Ventricular Remodeling , Adenosine/metabolism , Adult , Aged , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Calcium Signaling , Case-Control Studies , Cell Line , Cell Proliferation , Demethylation , Disease Models, Animal , Female , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/pathology , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Sus scrofa
14.
J Cutan Med Surg ; 21(2): 137-144, 2017.
Article in English | MEDLINE | ID: mdl-28300452

ABSTRACT

OBJECTIVES: The aim of this study was to assess the current knowledge children possess on melanoma and sun-protective behaviour. METHODS: A one-page survey was administered to students in grades 5, 7, and 9. RESULTS: Three hundred ninety-two students from 11 schools in Edmonton were surveyed. Seventy-one percent of students knew that sun exposure can cause skin cancers. Sixty-nine percent were taught by their parents about sun protection, but only 44% of students received similar instructions from teachers. Twenty percent of students indicated that they never or rarely wore sunscreen. Twenty-five percent of students had experienced painful sunburns, and only 46% were willing to use sunscreen if it were available at school. More Caucasian students reported painful or peeling sunburns in each grade level than their non-Caucasian peers (for grade 5, P = .003; for grade 7, P < .0001; for grade 9, P = .001). For all grade levels, the percentage of Caucasian students who indicated that they would not wear sunscreen when going out in the sun was greater than among their non-Caucasian peers (for grade 5, P < .001; for grade 7, P = .003; for grade 9, P = .015). CONCLUSIONS: A comprehensive and focused approach to sun-smart education is recommended for students.


Subject(s)
Health Behavior , Health Knowledge, Attitudes, Practice , Skin Neoplasms/prevention & control , Students/statistics & numerical data , Sunburn/epidemiology , Sunlight/adverse effects , Alberta/epidemiology , Female , Humans , Male , Skin Neoplasms/etiology , Sunburn/etiology , Sunburn/prevention & control , Sunscreening Agents/therapeutic use , Surveys and Questionnaires , White People/statistics & numerical data
15.
Microb Cell Fact ; 15: 100, 2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27277580

ABSTRACT

BACKGROUND: Formation of inclusion bodies poses a major hurdle in recovery of bioactive recombinant protein from Escherichia coli. Urea and guanidine hydrochloride have routinely been used to solubilize inclusion body proteins, but many times result in poor recovery of bioactive protein. High pH buffers, detergents and organic solvents like n-propanol have been successfully used as mild solubilization agents for high throughput recovery of bioactive protein from bacterial inclusion bodies. These mild solubilization agents preserve native-like secondary structures of proteins in inclusion body aggregates and result in improved recovery of bioactive protein as compared to conventional solubilization agents. Here we demonstrate solubilization of human growth hormone inclusion body aggregates using 30% trifluoroethanol in presence of 3 M urea and its refolding into bioactive form. RESULTS: Human growth hormone was expressed in E. coli M15 (pREP) cells in the form of inclusion bodies. Different concentrations of trifluoroethanol with or without addition of low concentration (3 M) of urea were used for solubilization of inclusion body aggregates. Thirty percent trifluoroethanol in combination with 3 M urea was found to be suitable for efficient solubilization of human growth hormone inclusion bodies. Solubilized protein was refolded by dilution and purified by anion exchange and size exclusion chromatography. Purified protein was analyzed for secondary and tertiary structure using different spectroscopic tools and was found to be bioactive by cell proliferation assay. To understand the mechanism of action of trifluoroethanol, secondary and tertiary structure of human growth hormone in trifluoroethanol was compared to that in presence of other denaturants like urea and guanidine hydrochloride. Trifluoroethanol was found to be stabilizing the secondary structure and destabilizing the tertiary structure of protein. Finally, it was observed that trifluoroethanol can be used to solubilize inclusion bodies of a number of proteins. CONCLUSIONS: Trifluoroethanol was found to be a suitable mild solubilization agent for bacterial inclusion bodies. Fully functional, bioactive human growth hormone was recovered in high yield from inclusion bodies using trifluoroethanol based solubilization buffer. It was also observed that trifluoroethanol has potential to solubilize inclusion bodies of different proteins.


Subject(s)
Escherichia coli/metabolism , Inclusion Bodies/metabolism , Recombinant Proteins/biosynthesis , Trifluoroethanol/chemistry , Chromatography, Gel , Chromatography, High Pressure Liquid , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Human Growth Hormone/genetics , Human Growth Hormone/metabolism , Humans , Inclusion Bodies/chemistry , Protein Refolding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
16.
Bioorg Med Chem Lett ; 26(2): 672-676, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26631316

ABSTRACT

A series of tryptophan-based peptides W1a, b-W4a, b, with diverse architectures were designed and synthesized. These tryptophan containing peptides can self-assemble to spherical particle. This self-assembled system was demonstrated to encapsulate rhodamine B and penetrate the cell membrane.


Subject(s)
Dendrimers/chemistry , Drug Carriers/chemistry , Peptides/chemistry , Rhodamines/administration & dosage , Tryptophan/chemistry , Animals , Cell Line , Mice
17.
Eur J Oral Sci ; 115(4): 296-302, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17697169

ABSTRACT

Phosphorylation of the organic matrix proteins of dentin is important for the initiation of mineralization, but its relevance in later mineralization stages is controversial. The objective of this study was to analyze changes in the total matrix phosphate content during dentin development and to identify their origin. Amino acid and total matrix phosphate analyses of microdissected developing mantle and circumpulpal fetal bovine dentin specimens were performed. The amino acid composition showed few changes during mantle and circumpulpal dentin maturation. However, the total matrix phosphate content showed a significant, positive correlation with tissue maturation in both mantle and circumpulpal dentin, with a two- and a three-fold increase, respectively, being observed. The data indicate that changes occur in the pattern of phosphorylation of matrix proteins during dentin maturation, which we suggest may play a functional role in later stages of tooth mineralization.


Subject(s)
Amino Acids/metabolism , Dentin/chemistry , Extracellular Matrix Proteins/metabolism , Incisor/chemistry , Phosphates/metabolism , Age Factors , Animals , Cattle , Dentin/embryology , Female , Incisor/embryology , Phosphoproteins/metabolism , Phosphorylation , Pregnancy , Sialoglycoproteins
SELECTION OF CITATIONS
SEARCH DETAIL
...